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An array of metal oxide sensors has been set up for detecting the vinegary defect in virgin olive oil.
The optimization process was carried out evaluating the variables affecting the process by three
desirability functions. Repeatability studies for 6 months and within day were done to evaluate the
sensor responses and remove those with high relative standard deviation. The sensor responses
were preprocessed applying five weight functions previously to build a regression model. Samples
of Spanish Arbequina and Picual virgin olive oil varieties spiked with different amounts of acetic acid
(15-200 mg/L) were used as a training set for the regression model. The test set was composed of
samples of Italian Coratina virgin olive oil spiked with the vinegary standard at five percentages
(10, 25, 40, 50, and 75). A fine-adjusted regression coefficient (Radj

2 ) 0.98) was computed with the
test set.
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INTRODUCTION

Aroma is a fundamental parameter in the sensory quality
assessment procedures for virgin olive oil (VOO). To date, the
sensory evaluation of VOO is determined by standardized panel
tests described in the European Union regulation (1) and trade
standards of the International Olive Oil Council (IOOC) (2).
Panels of trained assessors are used in both cases to evaluate a
set of sensory descriptors. Sensory descriptors of VOO can be
classified into “positive” and “negative”. The latter describes
defects of VOO, and they are mainly fusty, musty, muddy
sediment, vinegary, metallic, and rancid. Chemical compounds,
mainly volatiles, are responsible for these defects, and they are
formed through biogenic pathways of olives, during the oxida-
tion process of the unsaturated fatty acids, by the attack by molds
and bacteria, or when olives are overripe (3). In the case of the
vinegary defect, the volatile compounds are produced by acetic
bacteria, which grow during the storage of olives. Ethyl acetate
and acetic acid are the main metabolites responsible for this
defect (4).

The identification of the vinegary defect is usually carried
out by two procedures, the panel test (5) and the analysis of
volatile compounds (3). The former procedure is slow and
costly, and small cooperative societies cannot afford it. The
alternative solution is based on the quantification of volatile
compounds by dynamic headspace high-resolution gas chro-
matography (GC) (6). This procedure, though easy and rapid,
cannot be applied online in the processes of storage and bottling
of the VOOs.

A second alternative to a panel test is based on the use of
sensors that have been widely adopted in many fields of

analytical chemistry (7). The electronic nose, usually called the
array of sensors, is an emergent technology in the quality
assessment of foodstuffs (8-10). Previous papers have reported
the application of sensors in the detection of VOO defects (11),
classification of edible oils (12), volatile compounds (13), and
edible oil shelf life (14,15).

This paper analyzes the possibilities of three arrays of metal
oxide sensors (MOS) in the detection of the vinegary attribute
and their potential application in the sensory assessment of
VOO. For this purpose, the variables of the electronic nose were
optimized and modeled before the regression analyses.

MATERIALS AND METHODS

Materials. A Spanish VOO cv. Arbequina spiked with 60 mg/kg of
acetic acid was the standard used in the repeatability studies. This
standard was kept frozen between analytical runs and remained stable
over the course of the experiments. An Italian VOO sample (Coratina
var.) was used for optimizing the procedure. The training set was
composed of two Spanish VOOs (Picual and Arbequina varieties) spiked
with various amounts of acetic acid (15, 30, 60, 90, 120, and 200 mg/
L). The test set was composed of an Italian VOO (Coratina var.) that
was spiked with the standard of vinegary VOO at 10, 25, 40, 50, and
75%. The standard, supplied by the IOOC, had an intensity of vinegary
attribute 9 out of 10. The objective of the test set was not only to verify
the results of the training set but also to check the detection of vinegary
perception in VOO as the calibration of sensors (training set) was done
by simply adding various amounts of acetic acid.

Equipment. A Fox 4000 with ACU500 humidifier supplied by
AlphaMOS SA (Toulouse, France) was used. This instrument is
equipped with 18 MOS inside three chambers, six of which are undoped
MOS and 12 that are MOS-doped with noble catalytic metals to shift
the selectivity spectrum toward different chemical compounds. The
temporary and reversible adsorption of volatile reducing compounds
at the sensor surface changes its electrical resistance in a nonlinear* To whom correspondence should be addressed. E-mail: aparicio@cica.es.
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manner (8). The response is characteristic of each sensor and depends
on the concentration and the profile of the volatile compounds in the
sample.

The air conditioning unit (ACU 500) consists of a thermostated tank
containing distilled water where the carrier gas bubbles continually. In
that way, dry and humid air streams are obtained. A controlled mixture
of dry and humid synthetic airs sweeps the headspace of the sampling
chamber whose temperature is controlled automatically. When a valve
is opened in the injection phase, the gas sweeps the headspace of the
sampling chamber and flows successively to the three sensor chambers.
Inside each chamber, two sensors measure the temperature and the
relative humidity; there is not any automatic control.

Industrial air, from an air compressor, was used as a carrier gas
after it was filtered through two columns. The first column was filled
with molecular sieve 8/12 mesh (Supelco, Bellefonte, PA) to remove
the moisture, while the second column was filled with activated carbon
(Supelco, Bellefonte, PA) to remove hydrocarbons and other undesirable
volatile compounds. No significant differences in the baseline were
found when synthetic air and this purified industrial air were compared.

Procedure after Optimizing the Conditions. Aliquots of 5 g of
each samplesenough to cover the bottom of the 100 mL flasksswere
heated at 34°C inside a controlled thermostat sampling chamber for
10 min. After this headspace generation time, the carrier gas (air)
pumped the volatile compounds into the sensor chambers at a flow
rate of 100 mL/min for 90 s, the so-called injection time. After the
injection time, a valve was switched and only carrier gas was blown
into the sensor chambers to return to the baseline of the sensor signals
as soon as possible. The computer starts to collect data immediately
after the headspace generation time for 600 s, 90 s of the injection
time and 510 s of desorption time. The time between subsequent
analyses was 900 s. The flow rate was kept at 500 mL/min during the
first 10 min of this nonmeasurement time. These conditions ensured
that the baseline had indeed been recovered before performing the next
analysis. Samples were analyzed in duplicate.

Standards for calibration of the sensor array were measured at
programmed times to control the aging of sensors that did not affect
the measurements.

Optimizing Electronic Nose Conditions. In the optimization
process, the main goal was to extract the maximum amount of unbiased
information regarding the factors affecting the procedure from as few
observations as possible.

A Hyper Greco Latin-square design was used because the factors
of interest had more than two levels, and we previously knew that there
were no interactions between them (12). Numerous input variables have
a possible influence upon the electronic nose though some of them are
insignificant or nonpertinent, and they have been rejected. Sample
amount, headspace generation time, sample temperature during the
headspace generation, flow rate sweeping the volatile compounds, and
injection time were identified as the most significant variables, and
they were used in the experimental design.

In previous papers about the analysis of VOO volatile compounds,
the authors had established that sample temperature in headspace studies
should not be above 50°C in order to avoid degradation of volatiles
(16). At higher temperatures, olive oil becomes rancid; hence, it has
high concentrations of aldehydes and acids (17) that will certainly mask
the results (14). On the other hand, previous experience had shown
that sample temperatures lower than 25°C require a too-long headspace
generation time (6).

The authors’ experience working on dynamic headspace, for the
concentration of VOO volatile compounds, was used to delimit the
minimum amount of sample in relation to the volume of the flasks
(18). The minimum was 5 g, an amount that was enough to cover the
bottom of the flask, while the maximum was selected arbitrarily at 30
g.

The maximum and minimum generation times were selected
according to the literature, with the only condition being that the
minimum time was sufficient to allow sensors to reach equilibrium.
From a mathematical viewpoint, the equilibrium is reached when the
sensor response is asymptote to a value. The minimum value was fixed
at 10 min while the maximum was 30 min. The maximum and
minimum flow rates were also taken from the literature (400 and 100

mL/min, respectively) since the authors had no previous experience.
The minimum and maximum injection times were 30 and 120 s, periods
of time that were enough to reach the equilibrium with any sample of
VOO.

Conceptually speaking, optimizing implies that the variable to be
maximized has been selected and that the response of the sensors
contains enough information for this purpose. The problem is to decide
which characteristics would be useful in determining the quality of the
sensor responses. These characteristics, a mixture of objective and
subjective factors, are called desirabilities, and they will be the set of
output variables to be optimized. Three desirability variables were
evaluated as follows: the slope of the sensor adsorption, the dynamic
equilibrium of the sensors, and the output balance.

It is well-known that the sensors need a certain period of time to
produce a stable response to the excitation produced by the volatile
compounds. Thus, the slope of the sensor adsorption indirectly measures
the time that each sensor needs to reach equilibrium. The lower the
slope angle, the greater the range for distinguishing oils.

The sensors exhibit interactions when volatile compounds flow over
them. A dynamic equilibrium develops as volatile compounds are
constantly adsorbed and desorbed at the sensor surface (19). The
evaluation of this desirability variable was based on the equilibrium
and recovery time. They are the times that the sensor needs to reach
either equilibrium or recovery.

The response intensity of each sensor depends on the sensitivity to
the food product, but the response can be increased or decreased, acting
properly on the variables to be optimized. The increase of the response
of some sensors can take others to saturation, or on the contrary,
medium response of the most sensitive can generate a very low signal
of less sensitive sensors. This desirability represents a balance between
these extreme cases by measuring the response intensities of the whole
set of sensors.

A Hyper Greco Latin-square experimental design (20) was applied
as it is recommended when factors have more than two levels and there
are no interactions between factors. Sixteen experiments (Table 1) were
automatically programmed (20), and the results were evaluated, in terms
of the described desirability functions, by three assessors.

The results of the experimental design, in terms of the three
desirability functions, involve a certain degree of uncertainty and
fuzziness. Assessors analyzed the same process from three different
criteria, and we needed a single function (implication function) that
clusters the three desirability functions. Taking into account both aspects
(subjectivity and the three criteria), it seems reasonable that the
implication functions to calculate the overall desirability should derive
from fuzzy logic rather than classical arithmetic. We have applied the
fuzzy algorithm LuckasiewiczT1.5-conorm (21) formulated as

wherew1, w2, andw3 are the values associated with the three desirability
functions.

Applying the implication function, the conditions of the thirteenth
experiment (weight, 5 g; temperature, 34°C; generation time, 10 min;

Table 1. Hyper Greco Latin-Square Experimentsa

E S W F T I E S W F T I

1 30 5 400 25 30 9 15 5 175 50 60
2 30 15 250 34 60 10 15 15 100 42 30
3 30 25 175 42 90 11 15 25 400 34 120
4 30 30 100 50 120 12 15 30 250 25 90
5 20 5 250 42 120 13 10 5 100 34 90
6 20 15 400 50 90 14 10 15 175 25 120
7 20 25 100 25 60 15 10 25 250 50 30
8 20 30 175 34 30 16 10 30 400 42 60

a Values of the variables affecting sensor responses. Figures in bold represent
the best conditions. Legend: E, order number of the experiments; S, generation
time (min) of the static headspace; W, sample weight (g); F, carrier gas flow rate
(mL/min) sweeping volatiles; T, sample temperature (°C); and I, injection time (s).

T1.5(w1, w2, w3) ) w1w2w3/[4 - 2(w1 + w2 + w3) + w1w2 +
w1w3 + w2w3]
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flow rate, 100 mL/min; and injection time, 90 s) were the best evaluated
and hence selected for the next experiments. Modified simplex (22)
was also used, and after successive expansions and contractions (23),
the results were very similar to the conditions attained by the Hyper
Greco Latin-square design.

Data Preprocessing.The response of sensors presents an exponential-
like shape, but not all of this information is useful. The data
preprocessing operates on the response in a way that allows reduction
of the effect of sensor drift, diminishment of the whole set of data to
a reasonable number, and normalization of the information (24). After
different methods of data preprocessing (raw data, differential transform,
and subtracting the baseline of each sensor) were tested, the fractional
resistance change (R0 - R)/R0 (R is steady state resistance, andR0 is
baseline resistance) was selected since it showed the optimum dif-
ferential properties. Weighting time slicing (WTS) functions have been
used to reduce the information of the sensor array to a reasonable
dataset. The number of WTS was five. The first function was applied
to the whole sensor response while the other four functions were applied
to specific regions defined along the response curve,Figure 1. The
first function allows balancing of the sensor response (adsorption vs
desorption) by giving more weight to the absorption slope. The other
four functions, also called windowing time slicing (24), are almost a
precise selection of values in the adsorption slope, in the vicinity of
the equilibrium stage or steady state (where adsorption and desorption
occur at the same velocity), at the middle of the desorption slope, and
at the end of the desorption slope. Schaak et al. (25) also reported these
selected regions. When WTS functions were performed, vector au-
toscaling was used to normalize the information from the array of
sensors.

Measurements of Repeatability.The study of the repeatability,
either between days or within day, was investigated by consecutively
collecting the sensor results of the same sample of olive oil (VOO cv.
Arbequina spiked with 60 ppm of acetic acid). The within day
repeatability was studied by collecting the sensor responses of the same
sample 10 times during a day. The between days repeatability was
studied by analyzing the results of the samples collected for 6 months.
The relative standard deviation (%RSD) was the parameter used to
analyze the repeatability, RSD is defined as the ratio between the
standard deviation (STD) and the mean.

Mathematical Procedure. Stepwise multiple regression analysis
(SMRA) was used to build a predictive linear model that explains the
dependent variable (i.e., acetic acid concentration) by the set of
independent variables (data after applying WTS functions). SMRA
includes in, or excludes from, the equation independent variables at
each step of the analysis. When no further variable adds to the prediction
equation, the analysis stops. Assumptions of linearity and normality,
problems of multicollinearity and outliers, the number of variables and
samples, and importance of residual analysis were taken into account
when applying the procedure. TheF distribution statistical table was
used to determineF values, eitherF-to-enter orF-to-remove, to select
the independent variables. The degrees of freedom of these F-values

were “1” and “N-p-1”, whereN is the number of sample and “p” is the
number of independent variables in the regression equation.F values
were selected from theF distribution table forF(F) ) 0.999 in all
cases. AdjustedR2 (Radj

2) was chosen as the regression coefficient to
avoid the fact that a sensor could be selected because it diminishes or
removes irrelevant variance and not because it predicts the dependent
variable (26). The Durbin-Watson test (27) was applied to ensure that
there was nonautocorrelation among residuals. Statistica (20) was used
to perform the data processing and to implement multivariate data
analyses.

RESULTS AND DISCUSSION

Study of Repeatability.Because sensor signal drifts are often
observed when analyzing from day to day, it is important to
understand whether any signal variation is due to sample change
or inherent signal drift. Thus, the use of reference standards
seems very important when carrying out any electronic nose
analyses (15). We selected a VOO spiked with acetic acid
because the best material for monitoring performance and
providing data for recalibration should be similar to the product
that is being tested (12,15).

Figure 2 shows the response of some sensors (WTS 2) over
a period of 6 months to study their aging (28,29). The fact that
the signals of those sensors do not decrease or increase
continuously leads to the assumption that a significant part of
the measurement of sensors during the experiences with the
training and test sets does not arise from a change of sensor
sensitivity (30). Figure 3, on the contrary, shows how the results
of the second WTS of sensor 12 (%RSD) 21.0) increase over
time, and the graph clearly points out a drift effect that
disqualifies this sensor information for further studies.Table 2
shows the %RSD of all sensors for a day to day study over a

Figure 1. WTS functions for reducing the information of each sensor to
five data. The response of a sensor (curve in bold) has been superimposed
to show the regions where information is collected.

Figure 2. Values of the second WTS of various sensors for 6 months.

Figure 3. Values of the second WTS of sensor 12 for 6 months.
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period of 6 months. Those values are the mean of the five WTS,
and sensors with values higher than 10% (sensors: 2-5, 7, 8,
and 10-15) were not used in the following studies. Concerning
the rest of the sensors (1, 6, 9, and 16-18), any WTS with a
%RSD higher than 10% was not used in the next studies either.
Table 2 also shows the %RSD of the within day study; the
number between brackets corresponds to the WTS where the
maximum %RSD was detected. %RSD values of the within day
repeatability study were low enough; the mean was 6.1%, with
the highest value at 12.0% (sensor 12). In the 6 month study,
the mean was slightly higher (11.7%) with the highest value
22.2% (sensor 2). The kind of sensor dope does not seem to
affect the behavior of sensors in these studies. Sensors of the
first chamber (undoped sensors) have shown only a slightly
worse behavior (higher %RSD) in the 6 month study (12.5%
of undoped vs 11.3% of doped sensors).

With regard to the WTS, the data of the fifth WTS showed
the lower values of %RSD either in within day or between days

studies. These data are related to the end of the sensor desorption
slope, when volatile compounds are desorbed from the sensor
surface. Nevertheless, data from the first WTS have the highest
values of %RSD; these data correspond to the balance between
the adsorption and the desorption of the volatile compounds
onto the sensor surface.

Regression Model.As said, sensory attributes of VOO aroma
have been traditionally determined by a panel test (1) and
perceived by assessors through volatile compounds. Aparicio
et al. (16) have identified the volatile compounds responsible
for some of those sensory attributes, while Morales et al. (4)
have found several volatile compounds that explain the vinegary
attribute. Volatiles were concentrated by dynamic headspace,
desorbed thermally, and quantified by GC. From the set of 16
chemical compounds explaining the vinegary attribute, acetic
acid and ethyl acetate showed the highest correlations. Acetic
acid contributed more to vinegary attribute than other volatiles
when assessors perceived the attribute with intensities around
or above 2 (structure scale of 0-5), while ethyl acetate was
also an important contributor when that value was greater than
4 (4).

On the other hand, VOOs do not have the same profile of
volatile compounds (18,31); hence, the level of perception of
sensory defects depends on the inherent matrix of volatiles
characterizing the oil. Assessors can perceive identical concen-
trations of acetic acid in different VOOs with different scores
due to the effect of masking by other volatile compounds. Two
Spanish varieties, Arbequina and Picual, characterized with quite
different sensory attributes (18), were used in the training set.
Arbequina is characterized by a sweet-fruity sensory attribute,
while a strong fruity odor characterizes the Picual variety (18).
These samples, spiked with acetic acid at various concentrations,

Table 2. Mean Values of RSD (%)a

sensor A B sensor A B

1 9.2 (1) 1.9 (1) 10 12.1 (3) 7.9 (1)
2 22.2 (1) 3.9 (2) 11 12.5 (1) 9.1 (1)
3 13.6 (4) 3.1 (2) 12 24.7 (1) 12.0 (1)
4 11.2 (1) 3.5 (2) 13 16.2 (3) 11.0 (1)
5 16.4 (1) 2.7 (1) 14 12.2 (2) 9.3 (3)
6 2.2 (1) 1.4 (1) 15 12.1 (4) 7.2 (2)
7 13.1 (1) 9.6 (1) 16 6.9 (3) 9.1 (3)
8 14.9 (1) 9.3 (1) 17 1.9 (2, 3) 1.3 (1, 2, 3)
9 6.9 (3) 6.4 (1) 18 2.1 (3) 1.2 (1, 2, 3)

a Repeatability study for 6 months (A) and within day (10 analyses) (B). Figures
in parentheses represent the WTS whose results have the highest %RSD.

Figure 4. Predicted vs observed values plot obtained for either training (smaller figure) or test sets of samples. Legend: A is the Arbequina variety, and
P is the Picual variety.
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were used to calibrate the sensors, since acetic acid contributes
more to a vinegary flavor than other compounds present in olive
oil. In fact, Harper and Kleinhenz (32) have established that
the minimum detection threshold of some sensors for acetic acid
in oil can be slightly lower than the orthonasal human threshold
level: 124 ppb for human vs 100 ppb for sensors.

Morales et al. (4) have determined the odor activity value
(OAV)sthe ratio between concentration and odor thresholds
of acetic acid (9.7) as the highest found for volatile compounds
characterizing vinegary attribute, while its correlation coefficient
was 0.92. In our case, when SMRA was applied to the
Arbequina variety, the adjusted regression coefficient (Radj

2) was
0.96 (F-to-enter) 47.18) while this value was slightly higher
(Radj

2 ) 0.97;F-to-enter) 47.18) for the Picual variety. Sensor
6 was selected in both cases.

A regression model was designed with a training set with
samples of both varieties, Arbequina and Picual. The adjusted
regression coefficient wasRadj

2 ) 0.97 for the following
equation:

The next objective was to check the regression model with
another varietal VOO (cv. Coratina from Italy) qualified with
other sensory attributes, mostly a bitter-pungent perception.
This oil was spiked with IOOC standard of vinegary VOO, so
emulating the authentic vinegary marked samples of VOO. Thus,
the test set was composed of samples that were supplemented
not only with acetic acid (the amount in the IOOC standard
was 4.84 mg/kg) but also with other chemical compounds (4)
such as, for example, pentan-1-ol, octane, hexyl acetate, butyric
acid, etc. The regression coefficient of SMRA on the test set
was even higher than the training set (Radj

2 ) 0.98;F ) 47.18).
Figure 4 shows the results of applying the regression equation
to the training set (samples of Picual and Arbequina spiked with
different concentrations of acetic acid) and test set (samples of
Coratina variety spiked with different percentages of IOOC
winey/vinegary standard).

It is well-known that the measures are not exact, and they
are subjected to imprecision. However, the statistical procedures
are mostly applied on the mean of the repetitions without taking
into account that it is a measure that should be reported along
with its confidence intervals. The confidence intervals for the
mean give us a range around the mean where we expect that
the value of any hypothetical measure is located. Thus, a
measure can be represented by a normal distribution (i.e., a bell
shape or a triangular function) whose peak point is the mean,
and its bandwidth is the product of the STD for thet-Student
(t) at p ) 0.05. This implies that a set ofn data should be a set
of n distributions of data or at least a set ofk × n data; k
represents the two values of the equationx ( STD × t, where
x is the mean. A regression analysis based on this premise would
mean that the regression equation would have been checked
with any predictable data.

We have calculated the confidence limits using the Student’s
t distribution atp ) 0.05 while the STD was that of the 6 month
repeatability study. The objective was to take into account the
imprecision that was possible or, in other words, to check the
regression equation against the worst variability of sensors that
can be predicted. Each one of the data of the test set (Coratina
var.) was supplemented with the confidence limits for the first
(third WTS) and sixth (third and fifth WTS) sensor described
in the regression equation. The good regression coefficient (Radj

2

) 0.92) points out that the nonlinear nature of MOS sensor

responses (33) does not seem to have a negative effect on the
result and the degradation of sensors over time does not mean
there is a problem with the regression equation either.
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